Root-derived oxylipins promote green peach aphid performance on Arabidopsis foliage.

نویسندگان

  • Vamsi J Nalam
  • Jantana Keeretaweep
  • Sujon Sarowar
  • Jyoti Shah
چکیده

Oxylipins function as signaling molecules in plant growth and development and contribute to defense against stress. Here, we show that oxylipins also facilitate infestation of Arabidopsis thaliana shoots by the phloem sap-consuming green peach aphid (GPA; Myzus persicae), an agronomically important insect pest. GPAs had difficulty feeding from sieve elements and tapping into the xylem of lipoxygenase5 (lox5) mutant plants defective in LOX activity. These defects in GPA performance in the lox5 mutant were accompanied by reduced water content of GPAs and a smaller population size of GPAs in the mutant compared with the wild-type plant. LOX5 expression was rapidly induced in roots in response to infestation of shoots by GPAs. In parallel, levels of LOX5-derived oxylipins increased in roots and in petiole exudates of GPA-colonized plants. Application of 9-hydroxyoctadecadienoic acid (an oxylipin produced by the LOX5 enzyme) to roots restored water content and GPA population size in lox5 plants, thus confirming that a LOX5-derived oxylipin promotes infestation of the foliage by GPAs. Micrografting experiments demonstrated that GPA performance on foliage is influenced by the LOX5 genotype in roots, thus demonstrating the importance of root-derived oxylipins in colonization of aboveground organs by an insect.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Root-Derived Oxylipins Promote Green Peach Aphid Performance on Arabidopsis Foliage W

Oxylipins function as signaling molecules in plant growth and development and contribute to defense against stress. Here, we show that oxylipins also facilitate infestation of Arabidopsis thaliana shoots by the phloem sap–consuming green peach aphid (GPA; Myzus persicae), an agronomically important insect pest. GPAs had difficulty feeding from sieve elements and tapping into the xylem of lipoxy...

متن کامل

The NIa-Pro protein of Turnip mosaic virus improves growth and reproduction of the aphid vector, Myzus persicae (green peach aphid).

Many plant viruses depend on aphids and other phloem-feeding insects for transmission within and among host plants. Thus, viruses may promote their own transmission by manipulating plant physiology to attract aphids and increase aphid reproduction. Consistent with this hypothesis, Myzus persicae (green peach aphids) prefer to settle on Nicotiana benthamiana infected with Turnip mosaic virus (Tu...

متن کامل

The Protease Inhibitor CI2c Gene Induced by Bird Cherry-Oat Aphid in Barley Inhibits Green Peach Aphid Fecundity in Transgenic Arabidopsis

Aphids are phloem feeders that cause large damage globally as pest insects. They induce a variety of responses in the host plant, but not much is known about which responses are promoting or inhibiting aphid performance. Here, we investigated whether one of the responses induced in barley by the cereal aphid, bird cherry-oat aphid (Rhopalosiphum padi L.) affects aphid performance in the model p...

متن کامل

Evaluation of Admire Soil Treatments on Colonization of Green Peach Aphid and Marketability of Lettuce

Admire (imidacloprid), applied as a soil treatment, protected lettuce plants from developing infestations of green peach aphid, Myzus persicae (Sulzer), for 60 -100 d after planting based on two small plot and two commercial field trials. Admire applied 7.6 an sub -seed furrow provided longer and more consistent protection from green peach aphid than treatments applied to the soil surface, as a...

متن کامل

Disruption of Ethylene Responses by Turnip mosaic virus Mediates Suppression of Plant Defense against the Green Peach Aphid Vector.

Plants employ diverse responses mediated by phytohormones to defend themselves against pathogens and herbivores. Adapted pathogens and herbivores often manipulate these responses to their benefit. Previously, we demonstrated that Turnip mosaic virus (TuMV) infection suppresses callose deposition, an important plant defense induced in response to feeding by its aphid vector, the green peach aphi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Plant cell

دوره 24 4  شماره 

صفحات  -

تاریخ انتشار 2012